1.

`sin^(3)xcos^(3)x`

Answer» Let `y=sin^(3)xcos^(3)x`
`(dy)/(dx) = sin^(3).x.d/(dx)cos^(3)x+cos^(3)xd/(dx)sin^(3)x` [By product rule]
`=sin^(3)x.3cos^(2)x(-sinx) + cos^(3)x. 3sin^(2)xcosx` [By chain rule]
`=-3cos^(2)xcos^(2)x(cos^(2)x-sin^(2)x)`
`=3sin^(2)xcos^(2)xcos2x`
`=3/4(2sinxcosx)^(2)cos2x`
`=3/4sin^(2)2xcos2x`


Discussion

No Comment Found