InterviewSolution
Saved Bookmarks
| 1. |
Solve `sin 2x - sin 4x + sin 6x = 0`. |
|
Answer» `sin2x- sin4x+ sin6x = 0` as we know that, `(sina + sinb = 2sin((a+b)/2)cos((a-b)/2))` so, `2sin4x.cos(-2x) - sin4x = 0` `= Sin4x(2cos2x-1) = 0` now it can possible that whether `sin4x = 0 or 2cos2x-1=0` when `sin 4x=0` `4x = n pi & n in z` `x= npi/4` when `2cos 2x-1=0` `cos2x= cos (pi/3) ` `2x = 2n pi +- pi/3` `x= n pi +- pi/6` answer = `(npi)/4 , npi +- pi/6` |
|