1.

Solve the following equations : 2 cos2 x – 5 cos x + 2 = 0

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

• tan x = tan y, implies x = nπ + y, where n ∈ Z.

given,

2 cos2 x – 5 cos x + 2 =0 

As the equation is of 2nd degree, so we need to solve a quadratic equation. 

First we will substitute trigonometric ratio with some variable k and we will solve for k 

Let, cos x = k 

∴ 2k2 – 5k + 2 = 0 

⇒ 2k2 – 4k – k +2 = 0 

⇒ 2k(k – 2) -1(k -2) = 0 

⇒ (k – 2)(2k - 1) = 0 

∴ k = 2 or k = 1/2

⇒ cos x = 2 {which is not possible} or cos x = 1/2 (acceptable) 

∴ cos x = 1/2 

⇒ cos x = cos 60° = cos π/3 

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

On comparing our equation with standard form, we have 

y = \(\fracπ{3}\)

∴ x = 2nπ ± \(\fracπ{3}\)where n ϵ Z ..ans



Discussion

No Comment Found