1.

Solve the following equations : cos 4x = cos 2x

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given,

cos 4x = cos 2x

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

From above expression and on comparison with standard equation we have: 

y = 2x

∴ 4x = 2nπ ± 2x

Hence,

4x = 2nπ + 2x or 4x = 2mπ - 2x

∴ 2x = 2nπ or 6x = 2mπ

⇒ x = nπ or x = \(\frac{2mπ}6\) = \(\frac{mπ}3\)

∴ x = nπ or \(\frac{mπ}3\)where m, n ϵ Z ..ans



Discussion

No Comment Found