InterviewSolution
| 1. |
Solve the following equations:(i) 4 sin2 x – 8 cos x + 1 = 0(ii) tan2 x + (1 – √3)tan x – √3 = 0(iii) 3 cos2 x – 2√3 sin x cos x – 3 sin2 x = 0(iv) cos 4x = cos 2x |
|
Answer» Since, the general solution of any trigonometric equation is given as sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z. cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. tan x = tan y, implies x = nπ + y, where n ∈ Z. (i) Given as 4 sin2 x – 8 cos x + 1 = 0 Now let us simplify, 4 sin2 x – 8 cos x + 1 = 0 4(1 – cos2 x) – 8 cos x + 1 = 0 [since, sin2 x = 1 – cos2 x] 4 – 4 cos2 x – 8 cos x + 1 = 0 4 cos2 x + 8 cos x – 5 = 0 Suppose cos x be ‘k’ 4k2 + 8k – 5 = 0 4k2 - 2k + 10k – 5 = 0 2k(2k – 1) + 5(2k – 1) = 0 (2k + 5) (2k – 1) = 0 k = -5/2 = -2.5 or k = 1/2 cos x = -2.5 or cos x = 1/2 Now, we shall consider only cos x = 1/2. cos x = -2.5 is not possible. Therefore, cos x = cos 60° = cos π/3 x = 2nπ ± π/3 ∴ the general solution is Thus, x = 2nπ ± π/3, where n ϵ Z. (ii) tan2 x + (1 – √3) tan x – √3 = 0 Now let us simplify, tan2 x + (1 – √3) tan x – √3 = 0 tan2 x + tan x – √3 tan x – √3 = 0 tan x (tan x + 1) – √3 (tan x + 1) = 0 (tan x + 1) ( tan x – √3) = 0 tan x = -1 or tan x = √3 As, tan x ϵ (-∞ , ∞) therefore both values are valid and acceptable. tan x = tan (-π/4) or tan x = tan (π/3) x = mπ – π/4 or x = nπ + π/3 ∴ the general solution is x = mπ – π/4 or nπ + π/3, where m, n ϵ Z. (iii) 3 cos2 x – 2√3 sin x cos x – 3 sin2 x = 0 Now let us simplify, 3 cos2 x – 2√3 sin x cos x – 3 sin2 x = 0 3 cos2 x – 3√3 sin x cos x + √3 sin x cos x – 3 sin2 x = 0 3 cos x (cos x – √3sin x) + √3 sin x (cos x – √3 sin x) = 0 √3 (cos x – √3 sin x) (√3 cos x + sin x) = 0 cos x – √3 sin x = 0 or sin x + √3 cos x = 0 cos x = √3 sin x or sin x = -√3 cos x tan x = 1/√3 or tan x = -√3 As, tan x ϵ (-∞ , ∞) therefore both values are valid and acceptable. tan x = tan (π/6) or tan x = tan (-π/3) x = mπ + π/6 or x = nπ – π/3 ∴ the general solution is x = mπ + π/6 or nπ – π/3, where m, n ϵ Z. (iv) Given as cos 4x = cos 2x Now let us simplify, cos 4x = cos 2x 4x = 2nπ ± 2x Therefore, 4x = 2nπ + 2x [or] 4x = 2nπ – 2x 2x = 2nπ [or] 6x = 2nπ x = nπ [or] x = nπ/3 ∴ the general solution is Thus, x = nπ [or] nπ/3, where n ϵ Z. |
|