InterviewSolution
| 1. |
Solve the following equations:(i) cos x + cos 2x + cos 3x = 0(ii) cos x + cos 3x – cos 2x = 0(iii) sin x + sin 5x = sin 3x(iv) cos x cos 2x cos 3x = 1/4 |
|
Answer» Since, the general solution of any trigonometric equation is given as sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z. cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. tan x = tan y, implies x = nπ + y, where n ∈ Z. (i) Given as cos x + cos 2x + cos 3x = 0 Now let us simplify, cos x + cos 2x + cos 3x = 0 Then, we shall rearrange and use transformation formula cos 2x + (cos x + cos 3x) = 0 On using the formula, cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2 cos 2x + 2 cos (3x + x)/2 cos (3x - x)/2 = 0 cos 2x + 2cos 2x cos x = 0 cos 2x (1 + 2 cos x) = 0 cos 2x = 0 or 1 + 2cos x = 0 cos 2x = cos 0 or cos x = -1/2 cos 2x = cos π/2 or cos x = cos (π – π/3) cos 2x = cos π/2 or cos x = cos (2π/3) 2x = (2n + 1) π/2 or x = 2mπ ± 2π/3 x = (2n + 1) π/4 or x = 2mπ ± 2π/3 ∴ the general solution is x = (2n + 1) π/4 or 2mπ ± 2π/3, where m, n ϵ Z. (ii) cos x + cos 3x – cos 2x = 0 Now let us simplify, cos x + cos 3x – cos 2x = 0 Then, we shall rearrange and use transformation formula cos x – cos 2x + cos 3x = 0 – cos 2x + (cos x + cos 3x) = 0 On using the formula, cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2 – cos 2x + 2 cos (3x + x)/2 cos (3x - x)/2 = 0 – cos 2x + 2cos 2x cos x = 0 cos 2x (-1 + 2 cos x) = 0 cos 2x = 0 or -1 + 2cos x = 0 cos 2x = cos 0 or cos x = 1/2 cos 2x = cos π/2 or cos x = cos (π/3) 2x = (2n + 1) π/2 or x = 2mπ ± π/3 x = (2n + 1) π/4 or x = 2mπ ± π/3 ∴ the general solution is x = (2n + 1) π/4 or 2mπ ± π/3, where m, n ϵ Z. (iii) sin x + sin 5x = sin 3x Now let us simplify, sin x + sin 5x = sin 3x sin x + sin 5x – sin 3x = 0 Then, we shall rearrange and use transformation formula – sin 3x + sin x + sin 5x = 0 – sin 3x + (sin 5x + sin x) = 0 On using the formula, sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2 – sin 3x + 2 sin (5x + x)/2 cos (5x - x)/2 = 0 2sin 3x cos 2x – sin 3x = 0 sin 3x ( 2cos 2x – 1) = 0 sin 3x = 0 or 2cos 2x – 1 = 0 sin 3x = sin 0 or cos 2x = 1/2 sin 3x = sin 0 or cos 2x = cos π/3 3x = nπ or 2x = 2mπ ± π/3 x = nπ/3 or x = mπ ± π/6 ∴ the general solution is x = nπ/3 or mπ ± π/6, where m, n ϵ Z. (iv) Given as cos x cos 2x cos 3x = 1/4 Now let us simplify, cos x cos 2x cos 3x = 1/4 4 cos x cos 2x cos 3x – 1 = 0 On using the formula, 2 cos A cos B = cos (A + B) + cos (A – B) 2(2cos x cos 3x) cos 2x – 1 = 0 2(cos 4x + cos 2x) cos2x – 1 = 0 2(2cos2 2x – 1 + cos 2x) cos 2x – 1 = 0 [using cos 2A = 2cos2A – 1] 4cos3 2x – 2cos 2x + 2cos2 2x – 1 = 0 2cos2 2x (2cos 2x + 1) -1(2cos 2x + 1) = 0 (2cos2 2x – 1) (2 cos 2x + 1) = 0 Therefore, cos 2x = -1/2 or cos 4x = 0 [using cos 2θ = 2cos2θ – 1] cos 2x = cos (π – π/3) or cos 4x = cos π/2 cos 2x = cos 2π/3 or cos 4x = cos π/2 2x = 2mπ ± 2π/3 or 4x = (2n + 1) π/2 x = mπ ± π/3 or x = (2n + 1) π/8 ∴ the general solution is Thus, x = mπ ± π/3 or (2n + 1) π/8, where m, n ϵ Z. |
|