1.

Solve `x^((log)_y x)=2a n dy^((log)_x y)=16`A. ` 2^(root(3)2)`B. ` 2 ^(root(3)4)`C. ` 2 ^(root(3)128)`D. ` 2 ^(root(3)16)`

Answer» Correct Answer - D
Let ` log_(y) x = 1`
Then ` x = y^(t)` …(1)
Now, ` x^(log_(y) x) =2` becomes
` x^(t) = 2`
`rArr x = 2^(1//t)` …(2)
And `y^(log_(x)y) = 16` becomes
` y^(1//t) = 2^(4)`
` rArr y = 2^(4//t)` ….(3)
Putting the values of x and y in (1), we get
` 2^(1//t) = 2^(4t^(2))`
` rArr 4t^(3) = 1`
` :. t = (1/4)^(1//3)` ....(4)
Using (4) and (2), we get ` x = (2)^((4)^(1//3)) = 2^(root(3)4)`
Using (4) and (3), we get ` y = (2)^((4)^(2//3)) = 2^(root(3)16)`


Discussion

No Comment Found