

InterviewSolution
Saved Bookmarks
1. |
`tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9)`is equal to(a)0 (b) `sqrt3` (c) 3(d)9 |
Answer» We know, `tan 3theta = (3tantheta - tan^3theta)/(1-3tan^2theta)` If `theta = pi/9` `=>tan(pi/3) = (3tan(pi/9) - tan^3(pi/9))/(1-3tan^2(pi/9))` `=>(sqrt3(1-3tan^2(pi/9))) = (3tan(pi/9) - tan^3(pi/9))` Squaring both sides, `=>3(1+9tan^4(pi/9) - 6tan^2(pi/9)) = 9tan^2(pi/9)+tan^6pi/9 - 6tan^4(pi/9)` `=>3+33tan^4(pi/9)-27tan^2(pi/9) = tan^6(pi/9)` `=>tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) = 3.` |
|