InterviewSolution
Saved Bookmarks
| 1. |
TanA=nTanB , SinA=mSinBThen prove Cos^2A=(m^2-1/n^2-1) |
| Answer» Given,\xa0tan A = n tan B{tex} \\Rightarrow{/tex} tanB = {tex}\\frac{1}{n}{/tex}tan A{tex}\\Rightarrow{/tex}\xa0cotB =\xa0{tex}\\frac { n } { \\tan A }{/tex}..........(1)Also given,\xa0sin A = m sin B{tex}\\Rightarrow{/tex}\xa0sin B =\xa0{tex}\\frac{1}{m}{/tex}sin A{tex}\\Rightarrow{/tex}\xa0cosec B =\xa0{tex}\\frac { m } { \\sin A }{/tex}.....(2)We know that, cosec2B - cot2B = 1, hence from (1) & (2) :-{tex} \\quad \\frac { m ^ { 2 } } { \\sin ^ { 2 } A } - \\frac { n ^ { 2 } } { \\tan ^ { 2 } A } = 1{/tex}{tex}\\Rightarrow \\quad \\frac { m ^ { 2 } } { \\sin ^ { 2 } A } - \\frac { n ^ { 2 } \\cos ^ { 2 } A } { \\sin ^ { 2 } A } = 1{/tex}{tex}\\Rightarrow \\quad \\frac { m ^ { 2 } - n ^ { 2 } \\cos ^ { 2 } A } { \\sin ^ { 2 } A } = 1{/tex}{tex}\\Rightarrow{/tex}\xa0m2 - n2cos2A = sin2A{tex}\\Rightarrow{/tex}\xa0m2 - n2cos2A = 1 - cos2A{tex}\\Rightarrow{/tex}\xa0m2 - 1 = n2cos2A - cos2A{tex}\\Rightarrow{/tex}\xa0m2 - 1 = (n2 - 1) cos2A{tex}\\Rightarrow \\quad \\frac { m ^ { 2 } - 1 } { n ^ { 2 } - 1 } ={/tex}\xa0cos2A | |