1.

The equation of the line passing through `(-4, 3, 1),` parallel to the plane `x +2y-z-5=0` and intersecting the line `(x+1)/-3=(y-3)/2=(z-2)/-1`A. `(x+4)/(3)=(y-3)/(-1)=(z-1)/(1)`B. `(x+4)/(-1)=(y-3)/(1)=(z-1)/(1)`C. `(x+4)/(1)=(y-3)/(1)=(z-1)/(3)`D. `(x-4)/(2)=(y+3)/(1)=(z+1)/(4)`

Answer» Correct Answer - A
Any point on the line`(x+1)/(-3)=(y-3)/(2)=(z-2)/(-1)` is of the form
`(-3lambda-1,2lambda+3,-lambda+2)`
`["take"(x+1)/(-3)=(y-3)/(2)=(z-2)/(-1)=lambdaimpliesx=-3lambda-1,`
`y=2lambda+3" and "z=-lambda+2`]
So, the coordinates of point of intersection of two lines will be `(-3lambda-1,2lambda+3,-lambda+2)` for some `lambdainR`
Let the point `A=(-3lambda-1,2lambda+3,-lambda+2)` and `B-=(-4, 3, 1)`
Then, `AB=OB-OA`
`=(-4hati+3hatj+hatk)-{(-3lambda-1)hati+(2lambda+3)hatj+(-lambda+2)hatk}`
`=(3lambda-3)hati-2lambdahatj+(lambda-1)hatk`
Now, as the line is parallel to the given plane and so AB will be parallel to the given plane and so AB will be perpendicular to the normal of plane.
`impliesAB.lambda=0," where" n=hati+2hatj-hatk` is normal to the plane.
`implies((3llambda-3)hati-2lambdahatj+(lambda-1)hatk).(hati+2hatj-hatk)=0`
`implies3(lambda-1)-4lambda+(-1)(lambda-1)=0`
`[because` If `a=a_(1)hatja_(2)hatj+a_(3)hatk" and "b=b_(1)hati+b_(2)hatj+b_(3)hatk,`
then `a.b=a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3)`]
`implies3lambda-3-4lambda-lambda+1=0`
`implies" "-2lambda=2implieslambda=-1`
Now, the required equation is the equation of line joining A(2, 1 , 3) and B(-4, 3, 1), which is
`(x-(-4))/(2-(-4))=(y-3)/(1-3)=(z-1)/(3-1)`
[`because` Equation of line joining `(x_(1),y_(1),z_(1))` and `(x_(2),y_(2),z_(2))` is
`(x-x_(1))/(x_(2)-x_(1))=(y-y_(1))/(y_(2)-y_(1))=(z-z_(1))/(z_(2)-a_(1))`]
`implies" "(c+4)/(6)=(y-3)/(-2)=(z-1)/(2)`
or`" "(x+4)/(3)=(y-3)/(-1)=(z-1)/(1)" "["multiplying by "2]`


Discussion

No Comment Found

Related InterviewSolutions