InterviewSolution
Saved Bookmarks
| 1. |
The general solution of the equation `8cosxcos2xcos4x=(sin6x)/(sin x)`is`x=((npi)/7)+(pi/(21)),AAn in Z``x=((2pi)/7)+(pi/(14)),AAn in Z``x=((npi)/7)+(pi/(14)),AAn in Z``x=(npi)+(pi/(14)),AAn in Z` |
|
Answer» `4(2sinxcosx)cos2xcos4x=sin6x` `4sin2xcos2xcos4x=sin6x` `2(2sinxcos2x)cos4x=sin6x` `2sin4xcos4x=sin6x` `sin8x-sin6x=0` `2cos((8x+6x)/2)*sin((8x-6x)/2)=0` `2cos7xsinx=0` `cos7x=0` `7x=npi+pi/2` `x=npi/7+pi/14` Option B is correct. |
|