InterviewSolution
Saved Bookmarks
| 1. |
The general solution of the equation `sinx-3sin2x+sin3x=cosx-3cos2x+cos3x`is `(n in Z)``npi+pi/8`(b) `(npi)/2+pi/8``(-1)^n(npi)/2+pi/8`(d) `2npi+cos^(-1)2/3` |
|
Answer» `(sinx+sin3x) - 3sin2x = (cosx+cos3x) - 3cos2x` `=>(2sin2xcosx) - 3sin2x = (2cos2xcosx) - 3cos2x` `=>sin2x(2cosx-3) = cosx(2cosx-3)` `=>sin2x = cos2x` `=>tan2x = 1` `=>2x = npi+pi/4` `=>x = (npi)/2+pi/8` So, option - `(b)` is the correct option. |
|