1.

The general value of x satisfying the equation \(\sqrt3\)sinx + cosx = \(\sqrt3\) is given byA. x = nπ + (-1)n \(\frac{π}4\) + \(\frac{π}3\),n ∈ Z.B. x = nπ + (-1)n \(\frac{π}3\) + \(\frac{π}6\),n ∈ Z.C. x = nπ ± \(\frac{π}6\),n ∈ Z.D. x = nπ ± \(\frac{π}3\),n ∈ Z.

Answer»

Cos2x = (√3 -√3sin x)2 

1 - sin2x = 3 + 3sin2x - 6sin x 

4sin2x - 6sin x+2 = 0 

2sin2x - 3sin x+1 = 0 

sin x = 1 or 0.5 

We know, 

x = nπ + (-1)nθ

x = nπ + (-1)\((\frac{π}2)\) or x =  nπ + (-1)\((\frac{π}6)\)

Therefore, the values of x are

\(\frac{π}6\),\(\frac{π}2\),\(\frac{5π}6\),π,\(\frac{13π}6\)

So, these values are obtained for different value of n from the equation

x =  nπ + (-1)\(\frac{π}2\) - \(\frac{π}6\),n ∈ Z.

So, Option B



Discussion

No Comment Found