InterviewSolution
Saved Bookmarks
| 1. |
The nubmber of solutions of x in the interval `[0,5pi]` satisfying the equation `3sin^(2)x-7sinx+2=0` is |
|
Answer» Correct Answer - C Given ,`3sin^(2)x-7sinx+2=0` `rArr3sin^(2)x-6sinx-sinx-+2=0` `rArr3sinx(sinx-2)-1(sinx-2)=0` `rArr(3sinx-1)(sinx-2)=0` `rArrsinx=(1)/(3)or2rArrsinx=(1)/(3) " " [becausesinxne2]` `rArrx=sin^(-1)((1)/(3))` Let `"sin"^(-1)(1)/(3)=alpha,0ltalphalt(pi)/(2),alphain[-(pi)/(2),(pi)/(2)]` Then `alpha,pi-alpha,2pi+alpha,3pi-alpha,4pi+alpha,5pi-alpha` are the solutions in `[0,5pi]`. `therefore` Required number of solutions are 6. |
|