InterviewSolution
Saved Bookmarks
| 1. |
The number of integral values of `k` for which the equation `7cos x +5 sinx=2k+1` has a solution is (1) `4` (2) `8` (3) `10` (4) `12` |
|
Answer» `7cosx+5sinx=2k+1` `7/sqrt(7^2+5^2)cosx+5/sqrt(7^2+5^2)sinx=(2k+1)/sqrt(7^2+5^2)` `tanphi=7/5` `sin(x+phi)=(2k+1)/sqrt74` `-1<=sin(x+phi)<=1` `=-1<=(2k+1)/sqrt74<-1` after pitting the values. 4+4=8. option 2 is correct. |
|