InterviewSolution
Saved Bookmarks
| 1. |
The number of solutions of the equation `cos6x+tan^2x+cos(6x)tan^2x=1`in the interval `[0,2pi]`is(a)`4`(b)` 5`(c) `6` (d)`7` |
|
Answer» `cos6x+tan^2x+cos6x*tan^2x=1` `cos6x[1+tan^2x]=1-tan^2x` `cos6x=(1-tan^2x)/(1+tan^2x)` `cos6x=cos2x` `cos6x-cos2x=0` `-2sin((6x+2x)/2)*sin((6x-2x)/2)=0` `-2sin4xsin2x=0` `sin4x=0` `0<=x<=2pi` `0<=4x<=8pi` `4x=0,pi,2pi,3pi,4pi,5pi,6pi,7pi,8pi` `x=0,pi/4,pi/2,3/4pi,pi,5/4pi,3/2pi,7/4pi,2pi` `sin2x=0` `0<=x<=2pi` `0<=2x<=4pi` `2x=0,pi,2pi,3pi,4pi` `x=0,pi/2,pi/3/2pi,2pi` `x=9`. |
|