1.

The number of solutions of the equation `sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5)` isA. `0`B. `1`C. `2`D. More than `2`

Answer» Correct Answer - C
`(c )` `|x|-|x-1|+|x-2|=sqrt(5)`
For `x ge 2`,
`x-(x-1)+x-2=sqrt(5)impliesx=1+sqrt(5)`
For ` 1 le x le 2`,
`x-(x-1)+(2-x)=sqrt(5)`
`x=3-sqrt(5)` No solution
For `0 le x lt 1`,
`x-(1-x)+2-x=sqrt(5)`
`x=sqrt(5)-1` No solution
For `x lt 0`,
`-x-(1-x)+2-x=sqrt(5)`
`x=1-sqrt(5)`
Hence, `x=sqrt(5)+1` or `x=1-sqrt(5)`


Discussion

No Comment Found