InterviewSolution
Saved Bookmarks
| 1. |
The number of values of x `in [0,npi] ,n in Z` that satisfy the equation ` log_|sinx|(1+cosx)=2` is |
|
Answer» Correct Answer - A We observe that `"log"_(|"sin"x|) (1+"cos"x) " is defined if " x ne n pi, (2n +1) (pi)/(2), n in Z`. Now, `"log"_(|"sin"x|) (1+"cos"x)=2` `rArr 1+"cos" x= |"sin"x|^(2)` `rArr "cos"^(2)x + "cos" x = 0 rArr "cos" x (1+"cos" x) = 0` But, `"cos"^(2)x + "cos" x ne 0 " for any " x in (0, n pi) - (2n-1) (pi)/(2), n in Z`. Hence, the given equation has no solution. |
|