InterviewSolution
Saved Bookmarks
| 1. |
The roots of the equation `2^(x+2).3^((3x)/(x-1))=9` are given byA. `log_(2)((2)/(3)),-2`B. 3,-3C. `-2,1-(log3)/(log 2)`D. `1-log((2)/(3)),2` |
|
Answer» Correct Answer - C We have, `2^(x+2)xx3^((3x)/(x-1))=3^(2)` `rArr(x+2)log 2+(3x)/(x-1)log 3=2 log 3` `rArr (x+2)log 2+((3x)/(x-1)-2)log 3=0` `rArr (x+2)log 2+((x+2)/(x-1))log 3=0` `rArr (x+2){log 2 +(log 3)/(x-1)}=0` `rArr x+2=0" or ",log 2+(log 3)/(x-1)=0` `rArrx=-" or ",x=1-(log 3)/(log 2)` |
|