1.

The schrodinger wave equation for hydrogen atom is `Psi_(2s)=1/(4sqrt2pi)(1/a_0)^(1//2) [2-r_0/a_0]e^(-2//a_0)` where `a_0` is Bohr radius. If the radial node in 2s be at `r_0`, then find r in terms of `a_0`A. `r_0=2a_0`B. `2r_0=a_0`C. `3//2r_0=a_0`D. `r_0=a_0`

Answer» Correct Answer - A
`Psi_(2s)=1/(4sqrt2pi) (1/a_0)^(3//2) [2-r_0/a_0] e^(r//a^0)` [uncertainty principle ]
`Psi_(2x)^2 =0` at node then , `[(2-r_0)/a_0] =0 rArr r_0 =2a_0`


Discussion

No Comment Found

Related InterviewSolutions