1.

The slope of a line is double the slope of another line. If tangent of the angle between them is \(\frac{1}{3}\) , find the slope of the line.

Answer»

 Let the slope of line be m 

∴ Slope of the another line be 2m

tan\(\theta\)=\(|\frac{m_1-m_2}{1+m_1m_2}|\)

\(\frac{1}{3}\)\(|\frac{2m-m}{1+2m^2}|\)

\(\frac{1}{3}\) = \(|\frac{m}{1+2m^2}|\)

2m2 + 1 = 3m

2m2 – 3m + 1 = 0 

(m – 1) (2m – 1) = 0 

If m – 1 = 0 ⇒ m = 1 

If 2m – 1 = 0 ⇒ m = \(\frac{1}{2}\) 

Hence, slope of lines (1 and 2) or ( \(\frac{1}{3}\) and 1)



Discussion

No Comment Found