InterviewSolution
Saved Bookmarks
| 1. |
The smallest positive value of `x`(in radians) satisfying the equation `(log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx)`is(a)`pi/(12)`(b) `pi/6`(c) `pi/4`(d) `pi/3` |
|
Answer» `log_(cosx)(sqrt3/2sinx)=-log_(secx)(tanx)` `log_(secx)(tanx)=(lntanx)/(lnsecx)=(lntanx)/(-lncosx)=-log_(cosx) tanx` `log_cosxx(sqrt3/2sinx)=2+log_cosx(tanx)=log_cosx tanx` `log_cosx(sqrt3/2cosx)=2` `sqrt3/2cosx=cos^2x` `cosx[cosx-sqrt3/2]=0` `cosx=sqrt3/2` `x=pi/6`. |
|