

InterviewSolution
1. |
The solution of the differential equation, \(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = {(x - y)^2}\)when y(1) = 1, is:1. \({\rm{lo}}{{\rm{g}}_{\rm{e}}}\left| {\frac{{2 - x}}{{2 - y}}} \right| = x - y\)2. \(- {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left| {\frac{{1 - x + y}}{{1 + x - y}}} \right| = 2\left( {x - 1} \right)\)3. \(- {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left| {\frac{{1 + x - y}}{{1 - x + y}}} \right| = x + y - 2\)4. \({\rm{lo}}{{\rm{g}}_{\rm{e}}}\left| {\frac{{2 - y}}{{2 - x}}} \right| = 2\left( {y - 1} \right)\) |
Answer» Correct Answer - Option 2 : \(- {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left| {\frac{{1 - x + y}}{{1 + x - y}}} \right| = 2\left( {x - 1} \right)\) From question, the differential equation given is: \(\frac{{dy}}{{dx}} = {(x - y)^2}\) The general form of the given equation is: \(\frac{{dy}}{{dx}} = f\left( {ax + by + c} \right)\) On putting, x - y = t \(1 - \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}} \Rightarrow \frac{{dy}}{{dx}} = 1 - \frac{{dt}}{{dx}}\) Now, the equation becomes, \(\Rightarrow 1 - \frac{{dt}}{{dx}} = {t^2}\) \(\Rightarrow \frac{{dt}}{{dx}} = 1 - {t^2}\) On separating the variables, \(\Rightarrow \smallint \frac{{dt}}{{1 - {t^2}}} = \smallint dx\) ∵ \(\left[ {\smallint \frac{{dx}}{{{a^2} - {x^2}}} = \frac{1}{{2a}}{\rm{lo}}{{\rm{g}}_e}\left| {\frac{{a + x}}{{a - x}}} \right| + C} \right]\) \(\Rightarrow \frac{1}{2}{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{1 + t}}{{1 - t}}} \right) = x + C\) \(\Rightarrow \frac{1}{2}{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{1 + x - y}}{{1 - x + y}}} \right) = x + C\) From question, when x = 1 then y = 1, \(\Rightarrow \frac{1}{2}{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{1 + 0}}{{1 + 0}}} \right) = 1 + C\) \(\Rightarrow \frac{1}{2}{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{1 + x - y}}{{1 - x + y}}} \right) = x - 1\) ∵ \(\left[ {{\rm{log}}\frac{1}{x} = {\rm{log}}{x^{ - 1}} = - {\rm{log}}x} \right]\) \(\therefore - {\rm{lo}}{{\rm{g}}_e}\left| {\frac{{1 - x + y}}{{1 + x - y}}} \right| = 2\left( {x - 1} \right)\) |
|