

InterviewSolution
1. |
What is the rate of change of \(\rm \sqrt {{x^2} + 48} \)relative to x2 at x = 4?1. 1/42. 1/83. 1/164. 1/24 |
Answer» Correct Answer - Option 3 : 1/16 Concept: The rate of change of the value of a function f(x)with respect to a variable t, is given by:\(\rm \frac {df(x)}{dt}\) Calculation: To Find:Rate of change of \(\rm \sqrt {{x^2} + 48} \) with respect to x2 Let u be\(\rm \sqrt {{x^2} + 48} \)and v be x2 \(\rm \frac{{du}}{{dx}} = \frac{{1 \times 2x}}{{2\sqrt {{({x^2}} + 48)}}} = \frac{x}{{\sqrt {{({x^2}} + 48)}}}\) \(\rm \frac{{dv}}{{dx}} = 2x\) \(\rm \frac{{du}}{{dv}} = \;\frac{{\frac{{du}}{{dx}}}}{{\frac{{dv}}{{dx}}}} = \;\frac{{\frac{x}{{\sqrt {{({x^2}} + 48)}}}}}{{2x}} = \;\frac{x}{{\sqrt {{({x^2}} + 48)}}} \times \frac{1}{{2x}}\;\) \(\rm \frac{{du}}{{dv}} = \frac{1}{{2\sqrt {{({x^2}} + 48)}}}\) At x = 4 \(\rm \frac{{du}}{{dv}} = \frac{1}{{2\sqrt {{({4^2}} + 48)}}}\) \(\rm \frac{{du}}{{dv}} = \frac{1}{{2\sqrt {64}}} = \frac{1}{{16}}\) ∴\(\rm \frac{{du}}{{dv}} = \frac{1}{{16}}\) |
|