1.

The value of \(25^{\big(\frac{-1}{4}log_5\,25\big)}\) is(a) \(\frac{1}{5}\)(b) \(-\frac{1}{25}\)(c) –25 (d) None of these

Answer»

(a) \(\frac{1}{5}\)

\(25^{\big[\big(\frac{-1}{4}log_5\,25\big)\big]}\) = \(5^{\big[2\big(\frac{-1}{4}log_5\,25\big)\big]}\)

\(5^{\big[\big(\frac{-1}{2}log_5\,25\big)\big]}\) = \(5^{log_5(25)^{-\frac{1}{2}}}\) = \(25^{-\frac{1}{2}}\) = \(\frac{1}{5}\)                      (∵ \(a^{log_ax}=x\))



Discussion

No Comment Found