1.

The value of ` int _(0)^(1) (x^(4) +1)/(x^(2)+1)dx ` isA. `1/6(3-4pi)`B. `1/6 (3pi+4)`C. `1/6(3+4pi)`D. `1/6(3pi-4)`

Answer» Correct Answer - D
Let `l=int_(0)^(1)(x^(4)+1)/(x^(2)+1)dx=int_(0)^(1)(x^(4)+1-1+1)/(x^(2)+1)dx`
`=int_(0)^(1)[(x^(4)-1)/(x^(2)+1)+(2)/(x^(2)+1)]dx`
`=int_(0)^(1)(x^(2)-1+(2)/(x^(2)+1))dx`
`=[(x^(3))/(3)-x+2tan^(-1)x]_(0)^(1)=[(1)/(3)-1+2tan^(-1)(1)-0]`
`=-(2)/(3)+2*(pi)/(4)=(3pi-4)/(6)`


Discussion

No Comment Found