1.

The value of integral ` sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx ` isA. ` int _(0)^(1) (x) dx`B. `int _(0)^(2) f(x) dx`C. ` int _(0)^(n) f(x) dx`D. ` n int _(0)^(1) f(x) dx`

Answer» Correct Answer - C
Let `l=int_(0)^(1)f(k-1+x)dx`
`rArr" "l=int_(k-1)^(k)f(t)dt," where "t=k-1+x`
`rArr" "l=int_(k-1)^(k)f(x)dx`
`therefore sum_(k=1)^(n)int_(k-1)^(k)f(x)dx=int_(0)^(1)f(x)dx+int_(1)^(2)f(x)dx+…+int_(n-1)^(n) f(x)dx=int_(0)^(n)f(x)dx`


Discussion

No Comment Found