InterviewSolution
Saved Bookmarks
| 1. |
The value of `(n_(2)+n_(1))` and `(n_(2)^(2)-n_(1)^(2))` for `He^(+)` ion in atomic spectrum are 4 and 8 reaspectively . The wave length of emitted photon whwn electron jump from `n_(2)` to `n_(1)` isA. `(32)/(9R_(H))`B. `(9)/(32R_(H))`C. `(32)/(9)R_(H)`D. `(9)/(32)R_(H)` |
|
Answer» Correct Answer - B `n_(2)+n_(1)=4` . . . (i) `n_(2)^(2)-n_(1)^(2)=8` i.e., `(n_(2)+n_(1))(n_(2)-n_(1))=8` `4(n_(2)-n_(1))=8` `(n_(2)-n_(1))=2` From eqns. (i) and (ii) `n_(2)=3,n_(1)=1` `(1)/(lamda)=R_(H)Z^(2)[(1)/(n_(1)^(2))-(1)/(n_(2)^(2))]` `=R_(H)xx2^(2)[(1)/(1^(2))-(1)/(3^(2))]` `(1)/(lamda)=R_(H)xx(32)/(9)` ltbr. `thereforelamda=(9)/(32R_(H))`. |
|