1.

The value of the integral ` l = int_(0)^(1) x(1-x)^(n) dx` isA. `(1)/(n+1)`B. `(1)/(n+2)`C. `(1)/(n+1)-(1)/(n+2)`D. `(1)/(n+1)+(1)/(n+2)`

Answer» Correct Answer - C
` l = int _(0)^(1) x (1-x)^(n) dx` ,
Put ` 1- x = z rArr -dx = dz`
` :. L = int_(1)^(0) (1-z) z^(n) (-dz) = int_(0)^(1) (z^(n) - z^(n+1)) dz` ,
` = [ (z^(n+1))/(n+1) - (z^(n+2))/(n+2)]_(0)^(1) = 1/(n+1) - 1/(n+2)`


Discussion

No Comment Found