InterviewSolution
Saved Bookmarks
| 1. |
The values of x,`0 |
|
Answer» `81^(sin^2x) + 81^(1-sin^2x) = 30` `81^(sin^2x) + 81 xx 81^(-sin^x)= 30` `81^(sin^2x) + 81/(81^(sin^2x))= 30` let `t= 81^(sin^2x)` now, `t + 81/t = 30` `t^2 -30t +81 = 0` `t^2 - 27t - 3t + 81=0` `(t-27)(t-3)= 0` `t=27,3` `81^(sin^2x) = 27` `3^(4sin^2x) = 3^3` so`4sin^2x = 3` `sin^2x = 3/4` `sinx = +- sqrt3/2` `x= pi/3 or -pi/3 = n pi/3` when `t=3` `81^(sin^2x) = 3` `3^(4sin^2x)= 3` `4sin^2x = 1` `sinx = +-1/2` `x= pi/6 or -pi/6` option A is correct answer |
|