

InterviewSolution
Saved Bookmarks
1. |
There are m arithmetic means between 5 and -16 such that the ratio of the 7th mean to the (m-7)th mean is 1:4. Find the value of m. |
Answer» Solution :LET `A_(1),A_(2),...,A_(m)`be m arithmetic means between 5 and -16. `:. 5,A_(1),A_(2),A_(3),...A_(m)-16` are in A.P. `:. T_(m+2)=-16 RARR 5+(m+1)d=-16` `rArr d=(-21)/(m+1)` `rArr (A_(7))/(A_(m-7))=(1)/(4) rArr(T_(8))/(T_(m-6))=(1)/(4)` `rArr (5+7d)/(5+(m-7)d)=(1)/(4) rArr (5+7((-21)/(m+1)))/ (5+(m-7)((-21)/(m+1)))=(1)/(4)` `rArr 20-(588)/(m+1)=5-(21(m-7))/(m+7)` `rArr 20m+20-588=5m+5-21m+147` `rArr36m=720` `rArr m=20` |
|