

InterviewSolution
Saved Bookmarks
1. |
`U-235` is decayed by bombardment by neutron as according to the equation: `._(92)U^(235) + ._(0)n^(1) rarr ._(42)Mo^(98) + ._(54)Xe^(136) + x ._(-1)e^(0) + y ._(0)n^(1)` Calculate the value of `x` and `y` and the energy released per uranium atom fragmented (neglect the mass of electron). Given masses (amu) `U-235 = 235.044`, `Xe = 135.907, Mo = 97.90, e = 5.5 xx 10^(-4), n = 1.0086`. |
Answer» The nuclear reaction is: `._(92)U^(235) + ._(0)n^(1) rarr ._(42)Mo^(98) + ._(54)Xe^(136) + x_(-1)e^(0) + y_(0) n^(1)`….(i) Equating the mass of the sides, we get `235 + 1 = 98 + 136 + x 0 + y + 1` `235 = 234 + y` `236 = 234 + y` `:. y = 236 - 234 = 2` Similarly equating the atomic number of both sides, we get `92 + 0 = 42 + 53 + x xx (-1) + y xx 0` `92 = 96 - x` `:. x = 96 - 92 = 4` Mass defect of Eq (i) = Masses o f`RHS -` Masses of `LHS` `= 236.0526 - 235.8264` `= 0.2262 "amu"` `:.` Energy released `= mc^(2)` or `E = m xx 931.48 MeV` `= 0.2262 xx 931.48 = 210.7 MeV` |
|