

InterviewSolution
Saved Bookmarks
1. |
Using properties of determinants, prove that `|{:(0, ab^(2), ac^(2)),(a^(2)b, 0, bc^(2)),(a^(2)c, cb^(2), 0):}|=2a^(3)b^(3)c^(3)` |
Answer» Let the given determinant be `Delta`. Then, `Delta = |{:(0, ab^(2), ac^(2)),(a^(2)b, 0, bc^(2)),(a^(2)c, cb^(2), 0):}|` `=(a^(2)b^(2)c^(2))* |{:(0, a, a),(b, 0, b),(c, c, 0):}| " "["taking"a^(2), b^(2), c^(2) "common from"C_(1), C_(2) " and "C_(3)"respectively"]` `=(a^(3)b^(3)c^(3))* |{:(0, 1, 1),(1, 0, 1),(1, 1, 0):}| " "["taking a, b, c common from"R_(1), R_(2) " and "R_(3)"respectively"]` `=(a^(3)b^(3)c^(3))* |{:(0, 1, 1),(1, 0, 1),(0, 1, -1):}| " "[R_(3)to R_(3) - R_(2)]` `=(a^(3)b^(3)c^(3))*(-1)* |{:(1, 1),(1, -1):}| " "["expanded by"C_(1)]` `= -(a^(3)b^(3)c^(3))(-1-1) = 2a^(3)b^(3)c^(3).` Hence, `Delta = 2a^(3)b^(3)c^(3).` |
|