1.

What is the area of the triangle having sides equal to 10 cm, 16 cm and 24 cm?(a) \(25\sqrt{15} cm^2\)(b) \(35\sqrt{17} cm^2\)(c) \(15\sqrt{13} cm^2\)(d) \(15\sqrt{15} cm^2\)I got this question in an international level competition.Enquiry is from Heron’s Formula & Area of a Triangle by Heron’s Formula topic in portion Heron’s Formula of Mathematics – Class 9

Answer»

The CORRECT OPTION is (d) \(15\sqrt{15} cm^2\)

Easy explanation: a = 10, b = 16 and c = 24

s = \(\frac{a+b+c}{2}=\frac{10+16+24}{2} = \frac{50}{2}\) = 25

According to heron’s formula, area of the TRIANGLE = \(\sqrt{s*(s-a)*(s-b)*(s-c)}\)

= \(\sqrt{25*(25-10)*(25-16)*(25-24)}\)

= \(\sqrt{25*15*9*1}\)

= \(15\sqrt{15} cm^2\)



Discussion

No Comment Found

Related InterviewSolutions