1.

Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}a+b & 2a+b & 3a+b \\[0.3em]2a+b & 3a+b & 4a+b \\[0.3em]4a+b & 5a+b& 6a+b\end{vmatrix}\)

Answer»

Let Δ = \(\begin{vmatrix}a+b & 2a+b & 3a+b \\[0.3em]2a+b & 3a+b & 4a+b \\[0.3em]4a+b & 5a+b& 6a+b\end{vmatrix}\)

Applying C3 → C3 – C2, we get,

 Δ = \(\begin{vmatrix}a+b & 2a+b & a \\[0.3em]2a+b & 3a+b & a \\[0.3em]4a+b & 5a+b& a\end{vmatrix}\)

Applying C2→C2 – C1 gives,

  Δ = \(\begin{vmatrix}a+b & a & a \\[0.3em]2a+b & a & a \\[0.3em]4a+b & a& a\end{vmatrix}\)

As, 

C2 = C3, 

So the value of the determinant is zero.



Discussion

No Comment Found