

InterviewSolution
Saved Bookmarks
1. |
Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}a+b & 2a+b & 3a+b \\[0.3em]2a+b & 3a+b & 4a+b \\[0.3em]4a+b & 5a+b& 6a+b\end{vmatrix}\) |
Answer» Let Δ = \(\begin{vmatrix}a+b & 2a+b & 3a+b \\[0.3em]2a+b & 3a+b & 4a+b \\[0.3em]4a+b & 5a+b& 6a+b\end{vmatrix}\) Applying C3 → C3 – C2, we get, Δ = \(\begin{vmatrix}a+b & 2a+b & a \\[0.3em]2a+b & 3a+b & a \\[0.3em]4a+b & 5a+b& a\end{vmatrix}\) Applying C2→C2 – C1 gives, Δ = \(\begin{vmatrix}a+b & a & a \\[0.3em]2a+b & a & a \\[0.3em]4a+b & a& a\end{vmatrix}\) As, C2 = C3, So the value of the determinant is zero. |
|