InterviewSolution
Saved Bookmarks
| 1. |
Write a value of ∫(1 + cotx)/(x + log sinx)dx.\(\int\frac{1+cot\,x}{x+log\,sin\,x}\) dx |
|
Answer» Let x + log sin x = t Differentiating it on both sides we get, (1+cot x) dx = dt - i Given that, ∫(1 + cotx)/(x + log sinx)dx Substituting i in above equation we get, = \(\int\frac{dt}{t}\) = log t + c = log(x + log sin x ) + c |
|