1.

Write a value of ∫ tan3xsec2xdx.

Answer»

Given,

∫ tan3xsec2xdx

let tan x = t 

Differentiating on both sides we get, 

sec2x dx = dt 

Substituting above equation in ∫tan3x sec2x dx we get, 

= ∫t3 dt

\(\frac{t^4}{4}\)+ c

\(\frac{tan^4x}{4}\) + c



Discussion

No Comment Found