InterviewSolution
Saved Bookmarks
| 1. |
Write a value of ∫ tanx sec3x dx. |
|
Answer» Given, ∫ tanx sec3x dx = ∫ (tanx secx) sec2x dx Let secx = t Differentiating on both sides we get, tanx secx dx = dt Substituting above equation in ∫ tanx sec3x dx we get, = ∫t2 dt = \(\frac{t^3}{3}+c\) = \(\frac{sec^3x}{3}\) + c |
|