1.

Write a value of ∫ tanx sec3x dx.

Answer»

Given,

∫ tanx sec3x dx 

= ∫ (tanx secx) sec2x dx 

Let secx = t 

Differentiating on both sides we get, 

tanx secx dx = dt 

Substituting above equation in ∫ tanx sec3x dx we get, 

= ∫t2 dt

\(\frac{t^3}{3}+c\)

\(\frac{sec^3x}{3}\) + c



Discussion

No Comment Found