

InterviewSolution
1. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix} 1&a & bc \\[0.3em] 1 & b & ca \\[0.3em] 1 & c & ab \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix} 1&a & bc \\[0.3em] 1 & b & ca \\[0.3em] 1 & c & ab \end{bmatrix}\) ⇒ M11 = \(\begin{bmatrix} b&ca \\[0.3em] c & ab \\[0.3em] \end{bmatrix}\) M11 = b × ab – c × ca M11 = ab2 – ac2 ⇒ M21 = \(\begin{bmatrix} a&bc \\[0.3em] c & ab \\[0.3em] \end{bmatrix}\) M21 = a × ab – c × bc M21 = a2b – c2b ⇒ M31 = \(\begin{bmatrix} a&bc \\[0.3em] b & ca \\[0.3em] \end{bmatrix}\) M31 = a × ca – b × bc M31 = a2c – b2c C11 = (–1)1+1 × M11 = 1 × (ab2 – ac2) = ab2 – ac2 C21 = (–1)2+1 × M21 = –1 × (a2b – c2b) = c2b – a2b C31 = (–1)3+1 × M31 = 1 × (a2c – b2c) = a2c – b2c Now expanding along the first column we get |A| = a11 × C11 + a21× C21+ a31× C31 = 1× (ab2 – ac2) + 1 × (c2b – a2b) + 1× (a2c – b2c) = ab2 – ac2 + c2b – a2b + a2c – b2c |
|