1.

Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case : A = \(\begin{bmatrix} 1&-3 & 2 \\[0.3em] 4 & -1 & 2 \\[0.3em] 3 & 5 & 2 \end{bmatrix}\)

Answer»

Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. 

The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. 

Then finding the absolute value of the matrix newly formed. 

Also, 

Cij = (–1)i+j × Mij

 A = \(\begin{bmatrix} 1&-3 & 2 \\[0.3em] 4 & -1 & 2 \\[0.3em] 3 & 5 & 2 \end{bmatrix}\)

⇒ M11\(\begin{bmatrix} -1&2 \\[0.3em] 5 & 2 \\[0.3em] \end{bmatrix}\)

M11 = –1 × 2 – 5 × 2 

M11 = –12

 ⇒ M21\(\begin{bmatrix} -3&2 \\[0.3em] 5 & 2 \\[0.3em] \end{bmatrix}\)

M21 = –3 × 2 – 5 × 2 

M21 = –16

⇒ M31\(\begin{bmatrix} -3&2 \\[0.3em] -1 & 2 \\[0.3em] \end{bmatrix}\) 

M31 = –3 × 2 – (–1) × 2

M31 = – 4 

C11 = (–1)1+1 × M11 

= 1 × –12 

= –12 

C21 = (–1)2+1 × M21 

= –1 × –16 

= 16 

C31 = (–1)3+1 × M31 

= 1 × –4 

= –4

Now expanding along the first column we get,

|A| = a11 × C11 + a21× C21+ a31× C31 

= 1× (–12) + 4 × 16 + 3× (–4) 

= –12 + 64 –12 

= 40



Discussion

No Comment Found