1.

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π]

Answer»

\(\frac{sinx}{cosx}+\frac{1}{cosx}\) = 2 x cos x

sin x + 1 = 2 × (cos x)2 

sin x + 1 = 2 × (1 - (sin x)2

sin x + 1 = 2 – 2(sin x)2 

2(sin x)2 + sin x - 1 = 0 

Consider a=sin x 

So, the equation will be 

2a2+a -1 = 0 

From the equation a=0.5 or -1 

Which implies 

Sin x=0.5 or sin x=(-1) 

Therefore x=30° or 270° 

But for x=270° our equation will not be defined as cos (270° )=0

So, the solution for x = 30° 

According to trigonometric equations 

If sin x=sin a 

Then x = nπ – na 

Here sin x = sin30 

So, x = nπ + (-1)n × 30 

For n = 0, x = 30 and n =1,x = 150° and for n = 2,x = 390 

Hence between 0 to 2π there are only 2 possible solutions.



Discussion

No Comment Found