1.

`y(x)=|(sinx,cosx,sinx+cosx+1),(23,17,13),(1,1,1)|,x in RR,` then `(d^2y)/(dx^2)+y` is equal to :A. 6B. 4C. -10D. 0

Answer» Correct Answer - A
We have,
`:." "y(x)=|{:(sinx,cosx,sinx+cosx+1),(23,17," "13),(1,1," "1):}|`
`implies" "(dy)/(dx)=|{:(cosx,-sinx,cosx-sinx),(23," "17," "13),(1," "1," "1):}|`
`implies" "(d^(2)y)/(dx^(2))=|{:(-sinx,-cosx,-sinx-cosx),(23," "17," "13),(1," "1," "1):}|`
`implies" "(d^(2)y)/(dx^(2))+y=|{:(-sinx,-cosx,-sinx-cosx),(23," "17," "13),(1," "1," "1):}|+|{:(sinx,cosx,sinx+cosx+1),(23," "17," "13),(1," "1," "1):}|`
`implies" "(d^(2)y)/(dx^(2))+y=|{:(0,0,1),(23,17,13),(1,1,1):}|=23-17=6`
`implies" "(d^(2)y)/(dx^(2))+y=6`


Discussion

No Comment Found