1.

यदि (If) `x=asin2t(1+cos2t)` तथा (and) `y=bcos2t(1-cos2t)`, दिखाएँ कि (show that ) `((dy)/(dx))_(t=(pi)/(4))=(b)/(a)`

Answer» यहाँ `x=asin2t(1+cos2t)`
`rArr(dx)/(dt)=a.[2cos2t(1+cos2t)+sin2t(-2sin2t)]`
`=2a[cos2t+cos^(2)2t-sin^(2)2t]`
`=2a[cos2t+cos4t]`
साथ ही `y=b cos2t(1-cos2t)`
`rArr(dy)/(dt)=b[-2sin2t(1-cos2t)+cos2t.2sin2t]`
`=2b[-sin2t+2sin2tcos2t]`
`=2b[-sin2t+sin4t]`
`therefore(dy)/(dx)=(dy//dt)/(dx//dt)=(2b[-sin2t+sin4t])/(2a[cos2t+cos4t])`
`rArr((dy)/(dx))_(t=(pi)/(4))=(b)/(a)[(-"sin"(pi)/(2)+sinpi)/("cos"(pi)/(2)+"cos"pi)]=(b)/(a)[(-1+0)/(0-1)]=(b)/(a)`.


Discussion

No Comment Found