1.

यदि (If) `y=e^(x)(sinx+cosx)`, सिद्ध करें कि (prove that) `(d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0`

Answer» `y=e^(x)(sinx+cosx)`
`rArr(dy)/(dx)=e^(x)*(sinx+cosx)+e^(x)(cosx-sinx)=2e^(x)cosx`
`rArr(d^(2)y)/(dx^(2))=2[e^(x)cosx+e^(x)(-sinx)]`
`=2e^(x)(cosx-sinx)`
L.H.S. `=(d^(2)y)/(dx^(2))-2(dy)/(dx)+2y`
`=2e^(x)(cosx-sinx)-2xx2e^(x)cosx+2e^(x)(sinx+cosx)`
`=2e^(x)[cosx-sinx-2cosx+sinx+cosx]`
`=2e^(x)xx0=0=` R.H.S.


Discussion

No Comment Found