InterviewSolution
Saved Bookmarks
| 1. |
यदि (If) `y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))]`,(find) `(dy)/(dx)` निकालें । |
|
Answer» `y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=sin^(-1)[xsqrt(1-(sqrt(x))^(2))-sqrt(x)sqrt(1-x^(2))]` या `y=sin^(-1)x-sin^(-1)sqrt(x)." "[becausesin^(-1)x-sin^(-1)y=sin^(-1)[xsqrt(1-y^(2))-ysqrt(1-x^(2))]` x के सापेक्ष अवकलित (Differnitiate) करने पर हमें मिलता है, `(dy)/(dx)=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-(sqrt(x))^(2)))(d)/(dx)(sqrt(x))=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-x))*(1)/(2sqrt(x))` |
|