InterviewSolution
Saved Bookmarks
| 1. |
यदि `x^(y)+y^(x)=4` , `(dy)/(dx)` निकालें| |
|
Answer» दिया है, `x^(y)+y^(x)=4` … (1) माना कि `u=x^(y)` तथा `v=y^(x)` `becauseu=x^(y)` `thereforelogu=ylogx` दोनों तरफ x के सापेक्ष अवकलित करने पर हमें मिलता है, `(1)/(u)(du)/(dx)=y*(1)/(x)+logx*(dy)/(dx)` `therefore(du)/(dx)=u((y)/(x)+logx(dy)/(dx))=x^(y)((y)/(x)+logx(dy)/(dx))` ...(2) पुनः `v=y^(x)` `thereforelogv=xlogy` दोनों तरफ x के सापेक्ष अवकलित करने पर हमें मिलता है, `therefore(dv)/(dx)=v(logy+(x)/(y)(dy)/(dx))=y^(x)(logy+(x)/(y)(dy)/(dx))` (1) से ,u+v=4 `therefore(du)/(dx)+(dv)/(dx)=0` `rArrx^(y)((y)/(x)+logx(dy)/(dx))+y^(x)*(logy+(x)/(y)(dy)/(dx))=0` या `(x^(y)logx+y^(x)*(x)/(y))(dy)/(dx)=-(y^(x)logy+(y)/(x)*x^(y))` या `(x^(y)logx+xy^(x-1))(dy)/(dx)=-(y^(x)logy+yx^(y-1))` `therefore(dy)/(dx)=-(y^(x)logy+yx^(y-1))/(x^(y)logx+xy^(x-1))` |
|