InterviewSolution
Saved Bookmarks
| 1. |
यदि `y=btan^(-1)(x/a+tan^(-1)y/x)` हो,तो `(dy)/(dx)` ज्ञात कीजिए । |
|
Answer» `y=btan^(-1)(x/a+tan^(-1)y/x)` `rArry/b=tan^(-1)(x/a+tan^(-1)y/x)` `rArrtany/b=x/a+tan^(-1)y/x` दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `d/(dx){tan(y/b)}=d/(dx)(x/a)+d/(dx){tan^(-1)(y/x)}` `rArrsec^(2)(y/b).1/b(dy)/(dx)=1/a+1/(1+(y/x)^(2))`, `((x(dy)/(dx)-y.1)/(x^(2)))` `rArr1/bsec^(2)(y/b)(dy)/(dx)=1/a+(x^(2))/(x^(2)+y^(2)).((x(dy)/(dx)-y))/(x^(2))` `rArr1/bsec^(2)(y/b)(dy)/(dx)=1/a+x/(x^(2)+y^(2))(dy)/(dx)-y/(x^(2)+y^(2))` `rArr[1/bsec^(2)(y/b)-x/(x^(2)+y^(2))](dy)/(dx)=1/a-y/(x^(2)+y^(2))` `rArr(dy)/(dx)=(1/a-y/(x^(2)+y^(2)))/(1/bsec^(2)(y/b)-x/(x^(2)+y^(2)))` |
|