1.

यदि `y=log{e^(x)((x-2)/(x+2))^(3/4)}`, तब दर्शाइए की- `(dy)/(dx)=(x^(2)-1)/(x^(2)-4)`

Answer» दिया गया है-
`y=log{e^(x)((x-2)/(x+2))^(3/4)}`
`rArry=loge^(x)+log((x-2)/(x+2))^(3/4)`
`rArry=loge^(x)+3/4log((x-2)/(x+2))`
`rArry=x+3/4[log(x-2)-log(x+2)]`
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`(dy)/(dx)=d/(dx)(x)+3/4[d/(dx)log(x-2)-d/(dx)log(x+2)]`
`rArr(dy)/(dx)=1+3/4[1/(x-2)d/(dx)(x-2)-1/(x+2)d/(dx)(x+2)]`
`rArr(dy)/(dx)=1+3/4[1/(x-2)xx1-1/(x+2)xx1]`
`rArr(dy)/(dx)=1+3/4[1/(x-2)-1/(x+2)]`
`rArr(dy)/(dx)=1+3/4[(x+2-x+2)/((x-2)(x+2))]`
`rArr(dy)/(dx)=1+3/4xx4/(x^(2)-4)`
`rArr(dy)/(dx)=1+3/(x^(2)-4)`
`rArr(dy)/(dx)=((x^(2)-4)+3)/(x^(2)-4)`
`rArr(dy)/(dx)=(x^(2)-1)/(x^(2)-4)` यही सिद्ध करना था


Discussion

No Comment Found