1.

यदि `y=sin^(-1)((1)/(sqrt(1+x^(2))))+tan^(-1)((sqrt(1+x^(2))-1)/(x))`, `(dy)/(dx)` निकालें।

Answer» Correct Answer - `-(1)/(2(1+x^(2)))`
`x=tantheta` रखने पर हमें मिलता है,
`y=sin^(-1){(1)/(sqrt(1+tan^(2)theta))}+tan^(-1){(sqrt(1+tan^(2)theta)-1)/(tantheta)}`
`=sin^(-1)(costheta)+"tan"^(-1)(1-costheta)/(sintheta)`
`=sin^(-1)(costheta)+tan^(-1)("tan"(1)/(2)theta)`
`=sin^(-1)[sin((1)/(2)pi-theta)]+tan^(-1)("tan"(1)/(2)theta)`
`=(pi)/(2)-theta+(theta)/(2)=(pi)/(2)-(pi)/(2)-(1)/(2)tan^(-1)x`
`(dy)/(dx)=-(1)/(2(1+x^(2)))`


Discussion

No Comment Found