Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

Radha is ‘x’ years of age now 4 years ago, her age was(a) x – 4(b) 4 – x(c) 4 + x(d) 4x

Answer»

(a) x – 4

Radha is ‘x’ years of age now 4 years ago, her age was x - 4.

452.

Express the following verbal statement to algebraic statement.(i) ‘t’ is added to 100(ii) 4 times ‘q’(iii) 8 is reduced by ‘y’(iv) 56 added to 2 times ‘x’(v) 4 less to 9 times of ‘y’

Answer»

(i) t + 100

(ii) 4q

(iii) 8 – y

(iv) 2x + 56

(v) 9y – 4

453.

Express the following algebraic statement to verbal statement.(i) x ÷ 3(ii) 5n – 12(iii) 11 + 10x(iv) 70s

Answer»

(i) x divided by 3

(ii) 12 less to 5 times n

(iii) 11 added to 10 times x

(iv) 70 times s

454.

Write the coefficient of x2 and x in each of the following polynomials,(i) 4 + \(\frac{2}{5}x^2\) - 3x(ii) 6 – 2x2 + 3x3 - √7x(iii) πx2 – x + 2(iv) √3x2 + √2x + 0.5(v) x2 - \(\frac{7}{2}x\) + 8

Answer»
PolynomialCo-efficient of x2Co-efficient of x 
(i)

 4 + \(\frac{2}{5}x^2\) - 3x

\(\frac{2}{5}\)-3
(ii)6 – 2x2 + 3x- √7x-2-√7
(iii)πx2 – x + 2π-1
(iv)√3x+ √2x + 0.5√3√2
(v)

 x2\(\frac{7}{2}x\) + 8

1\(-\frac{7}{2}\)
455.

If the matrix `A=[[2,0,2] , [0,2,0] , [2,0,02]]` then `A^n=[[a,0,0] , [0,a,0] , [b,0,a]], n in N` whereA. a=2n, b=`2^(n)`B. a=`2^(n)`, b=2nC. `a=2^(n), b=n2^(n-1)`D. `a=2^(n), b=n2^(n)`

Answer» Correct Answer - D
456.

If `alpha,beta!=0`, and `f(n)""=alpha^n+beta^n`and `|3 1+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|=K(1-alpha)^2(1-beta)^2(alpha-beta)^2`, then K isequal to(1) `alphabeta`(2) `1/(alphabeta)`(3) 1(4) `-1`A. `alphabeta`B. `1/(alphabeta)`C. 1D. -1

Answer» Correct Answer - C
457.

Let `Q=({:(cos""pi/4,-sin""pi/4),(sin""pi/4, cos""pi/4):})` and `X=({:(1/sqrt(2)),(1/sqrt(2)):})` then `Q^(3)X` is equal toA. `({:(0),(1):})`B. `({:(-1/sqrt(2)),(1/sqrt(2)):})`C. `({:(-1),(0):})`D. `({:(-1/sqrt(2)),(-1/sqrt(2)):})`

Answer» Correct Answer - C
458.

Let A is a `3 times 3` matrix and B is its adjoint matrix. If `abs(B)=64`, then `abs(A)=`A. `pm2`B. `pm4`C. `pm8`D. `pm12`

Answer» Correct Answer - C
459.

If A is an `3xx3` non-singular matrix such that `A A^T=A^TA and B=A^(-1)A^T," then " B B^T` equalsA. 1+BB. IC. `B^(-1)`D. `(B^(-1))^(T)`

Answer» Correct Answer - B
460.

If `P=[(1,alpha,3),(1,3,3),(2,4,4)]` is the adjoint of a 3 x 3 matrix A and `|A| = 4`, then `alpha` is equal toA. 4B. 11C. 5D. 0

Answer» Correct Answer - B
461.

Manisha is z years old. Her uncle is 5z years old and her aunt is (5z – 4) years old.

Answer»

Manisha’s uncle is five times of Manisha’s age. Her aunt is 4 years younger than her uncle.

462.

Write the corresponding expressions.6 times q is subtracted from the smallest two digit number.

Answer»

6 times q = 6q.

The smallest two digit number = 10

6q subtracted from 10 = 10 – 6q.

463.

Solve for `x: (3x)/(2)+(x)/(3)=x+(x)/(6)+6`

Answer» `(3x)/(2)+(x)/(3)=x+(x)/(6)+6`
`(3x)/(2)+(x)/(3)-x-(x)/(6)=6`
`(3xx3x+2xxx-6xxx-1xxx)/(6)=6`
`(9x+2z-6x-1x)/(6)=6`
`11x-7x=6xx6`
4x=36
x=9
464.

Which of the following algebraic expression are polynomials? `(i) x^(1//2)+y^(1//2)+z^(1//2) " "(ii) x^(2)+y^(2)` (iii) `sqrt(x)+3` `sqrt(5)+x^(5)` (v) 2016

Answer» Correct Answer - (ii), (iv),(v) are polynomials
(1) `x^((1)/(2))+y^((1)/(2))+z^((1)/(2))` is not a polynomial since the exponens of the variables are fractions.
(ii) `x^(2)+y^(2)` is a polynomial.
(iii) `sqrt(x)+3` is not a plynomial, since the variable `(sqrt(x)=x^((1)/(2)))` has fraction exponent.
(iv) `sqrt(5)+x^(5)` is a polynomial.
(v) 2016 is a polynomial of degree zero. It is a constant polynomial
465.

Write the numerical coefficients of the followings .`17x^2y``12xy^3``3/5x``-3/2x^2`A. `17x^(2)y`B. `12xy^(3)`C. `(3)/(5)x`D. `(-3)/(2)x^(2)`

Answer» Correct Answer - A::B::C
(i) In `17x^(2)y`, the numerical coefficient is 17
(ii) In `12xy^(3)`, the numerical coefficient is 12.
(iii) In `(3)/(5)x`, the numerical coefficient is `(3)/(5)`
(iv) In `(-3)/(2)x^(2)`, the numerical coefficient is `(-3)/(2)`
466.

The degerr of the polynomial `8x^(2)-7x^(6)+6x^(5)-15x^(2)` is _____

Answer» Correct Answer - B
The degree of the polynomial is the highest exponent of a variable of `8x^(2)-7x^(2)+6x^(5)-15x^(3), i.e.,7.`.
Hence the corrct option is (b)
467.

Write the degree fo the following polynomials. (i)`3x^(5)-7x^(2)+8x-2x^(2)+10` `(ii) 2x^(9)-3x^(2)-14x^(3)-15x^(4)`

Answer» Correct Answer - (i) 8
(ii) 9
`(i) 3x^(5)-7x^(2)+8x-2x^(8)+10` conssist of 5 terms and the highest degree terms is `-2x^(8)`. The degree of the polynomial is 8
(ii) `2x^(9)-3x^(2)-14x^(3)-15x^(4)` consists of 4 terms of those term is `-2x^(8)`. The degree of the polynomia is 8
468.

If `omega` is an imaginary cube root of untiy then the value of the determinant `|{:(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2)):}|=`A. `-2omega`B. `-3omega^(2)`C. -1D. 0 (zero)

Answer» Correct Answer - B
469.

If `A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3)` are column matrices satisfying `AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1))` and `U` is `3xx3` matrix when columns are`U_(1), U_(2), U_(3)` then answer the following questions The value of (3 2 0) `U((3),(2),(0))` isA. 6B. 0 (zero)C. 1D. `2/3`

Answer» Correct Answer - B
470.

Name the following algebraic expresions based on the number of terms.A. `2018x^(2019)`B. x+2019C. 2017xD. `sqrt(3)x+sqrt(5)+y`

Answer» Correct Answer - A::B
(i) `2018x^(2019)` is a monomial,
(ii) x+2019 is a binomial.
(iii) 2017x is monomial
(iv) `sqrt(3),x+sqrt(5)+y` is a trinomial
471.

Let the ABC be a rectange of four sides `AB=(2x+3y+10) cm, BC=(2x+3y-5) cm, CD=(4x+3y+6) cm and DA =(2x-3y+7)cm`. Find the perimeter of the rectangleA. 30 cmB. 40 mC. 50 cmD. 60 cm

Answer» Correct Answer - C
Given `AB, =(2x+3y+10)cm, BC=(2x+3y-5)m, CD=(4x+3y+6) cm and DA=(2x-3y+7) cm`
We know that, in a rectangle oppositte sides are equal.
`AB=CD`
`2x+3y+10=4x+3y+6`
`4x-2x=10-6`
`2x=4`
`x=2`
`BC=DA 2x+3y-5=2x-3y+7`
`3y+3y=7+5`
`6y=12`
Side `AB=2x+3y+10=2(2)+3(3)+10`
`=4+6+10=20cm`
Side `BC=2x+3y-5=2(2)+3(2)-5`
Thereforem, the perimeter of the rectangle
`=2a(AB+BC)=2(20+5)=50 cm`
Hence, the correct option is (c)
472.

Translate each of the following statements into an equation:(a) The perimeter (p) of an equilateral triangle is three times of its side (a).(b) The diameter (d) of a circle is twice its radius (r).(c) The selling price (s) of an item is equal to the sum of the cost price (c) of an item and the profit (p) earned.(d) Amount (a) is equal to the sum of principal (p) and interest (i).

Answer»

(a) We have given,

Perimeter of an equilateral triangle = 3 (the side of an equilateral triangle)

⇒ p = 3a

(b) We have given,

Diameter of a circle

= 2 (the radius of the circle)

⇒ d = 2r

(c) We have given,

Selling price = cost price + profit

⇒ s = c + p

(d) We have given,

Amount = principal + interest

⇒ a = p + i

473.

Perimeter of a triangle is found by using the formula P = a + b + c, where a, b and c are the sides of the triangle. Write the rule that is expressed by this formula in words.

Answer»

Perimeter of a triangle is the sum of all its sides.

474.

A class with p students has planned a picnic. Rs. 50 per student is collected, out of which Rs. 1800 is paid in advance for transport. How much money is left with them to spend on other items?

Answer»

Number of students in the class = p

Total amount collected from p students = Rs. 50p

Amount paid in advance for transport = Rs. 1800

∴ Amount left with them = Rs. (50p – 1800)

475.

What is the area of square whose side is m cm?

Answer»

We have given, side of a square = m cm

Area of the square = side × side = m × m sq cm

476.

In a village, there are 8 water tanks to collect rain water. On a particular day, x litres of rain water is collected per tank. If 100 litres of water was already there in one of the tanks, what is the total amount of water in the tanks on that day?

Answer»

Number of water tanks = 8

Rain water collected by each tank = x litres

∴ Rain water collected by 8 tanks = 8x litres

But 100 litres of water was already there in one of the tanks.

∴ Total amount of water in the tanks = (8x + 100) litres.

477.

Cadets are marching in a parade. Therefore are 5 cadets in a row. What is the rule which gives the number of cadets, given the number of rows? (Use n for the number of rows.)

Answer»

Let number of rows be n

Number of cadets in one row = 5

Total number of cadets = number of cadets in a row x numbers of rows= 5

478.

At t minutes past 2 pm, the time needed to 3 pm is 3 minutes less than t2/4. Find t.

Answer»

60 – t = t2/4 – 3

⇒ t2 – 12 = 240 – 4t

⇒ t2 + 4t – 252 = 0

⇒ t2 + 18t – 14t – 252 = 0

⇒ t(t + 18) – 14(t + 18) = 0

⇒ (t + 18) (t – 14) = 0

t = 14 or t = -18 is not possible.

479.

A rectangular box has height h cm. its length is 5 times the height and breadth is 10 cm less than the length. Express he length and the breadth of the box in terms of the height.

Answer» We are given that a rectangular box has height h cm

Its length is 5 times the height

Length of rectangular box = 5h

We are also given that breadth is 10 cm less than the length.

Breadth = 5h-10

Hence The length and breadth of the box are 5h and  5h-10 respectively.

Length = 5 × Height

l = 5h cm

Breadth = 5 × Height – 10

b = (5h – 10)

480.

Expand using appropriate identities:(3p + 2q)2

Answer»

(3p + 2q)2

Comparing (3p + 2q)2 with (a + b)2, we get a = 3p and b = 2q.

(a + b)2 = a2 + 2ab + b2

(3p + 2q)2 

= (3p)2+ 2(3p) (2q) + (2q)2

= 9p2 + 12pq + 4q2

481.

Find the area of square whose side length is m + n – q.

Answer»

Area of square = side x side = (m + n – q) 

We know that, 

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

[m + n + (-q)]2 = m2 + n2 + (-q)2 + 2mn + 2n(-q) + 2(-q)m 

= m2 + n2 + q2 + 2mn – 2nq – 2qm 

Therefore, Area of square = m2 + n2 + q2 + 2mn – 2nq – 2qm 

= [m2 + n2 + q2 + 2mn – 2nq – 2qm] sq. units.

482.

Expand using appropriate identities:(105)2

Answer»

(105)2 = (100 + 5)2

Comparing (100 + 5)2 with (a + b)2, we get a = 100 and b = 5.

(a + b)2 = a2 + 2ab + b2

(100 + 5)2 

= (100)2 + 2(100)(5) + 52 

= 10000 + 1000 + 25

1052 = 11,025

483.

Expand : (x + 2y + 3z)2

Answer»

We know that, 

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

Substituting, a = x, b = 2y and c = 3z 

(x + 2y + 3z)2 = x2 + (2y)2 + (3z)2 + 2(x)(2y) + 2(2y)(3z) + 2(3z)(x) 

= x2 + 4y2 + 9z2 + 4xy + 12y2 + 6zx

484.

Expand using appropriate identities:(y – 5)(y + 5)

Answer»

(y – 5)(y + 5)

Comparing (y – 5) (y + 5) with (a – b) (a + b) we get a = y; b = 5

(a – b)(a + b) = a2 – b2

(y – 5)(y + 5) 

= y2 – 52 

= y2 – 25

485.

Expand : (a + b – c)2

Answer»

Replacing ‘c’ by ‘-c’ in the expansion of 

(a + b + c)2 = a2 + b2 + c2 + 2 ab + 2 bc + 2ca 

(a + b + (-c))2 = a2 + b2 + (-c)2 + 2ab + 2b(-c) + 2(-c)a 

= a2 + b2 + c2 + 2ab – 2bc – 2ca

486.

Expand using appropriate identities:(2x – 5d)2

Answer»

(2x – 5d)2

Comparing with (a – b)2, we get a = 2x b = 5d.

(a – b)2 = a2 – 2ab + b2

(2x – 5d)2 

= (2x)2 – 2(2x)(5d) + (5d)2

= 2x2 – 20 xd + 52d2 

= 4x2 – 20 xd + 25d2

487.

Expand using appropriate identities:203 × 197

Answer»

203 × 197 

= (200 + 3)(200 – 3)

Comparing (a + b) (a – b) we have a = 200, b = 3

(a + b)(a – b) = a2 – b2

(200 + 3)(200 – 3) = 2002 – 32

203 × 197 = 40000 – 9

203 × 197 = 39991

488.

Expand using appropriate identities:(3x)2 – 52

Answer»

(3x)2 – 52

Comparing (3x)2 – 52 with a2 – b2 we have a = 3x; b = 5

(a2 – b2) = (a + b)(a – b)

(3x)2 – 52 

= (3x + 5)(3x – 5) 

= 3x(3x – 5) + 5(3x – 5)

= (3x) (3x) – (3x)(5) + 5(3x) – 5(5)

= 9x2 – 15x + 15x – 25 

= 9x2 – 25

489.

Expand using appropriate identities:(2m + n)(2m +p)

Answer»

(2m + n) (2m + p)

Comparing (2m + n) (2m + p) with (x + a) (x + b) we have x = 2n; a = n ;b = p

(x – a)(x + b) = x2 + (a + b)x + ab

(2m +n) (2m +p) 

= (2m2) + (n +p)(2m) + (n) (p)

= 22m2 + n(2m) + p(2m) + np

= 4m2 + 2mn + 2mp + np

490.

Expand the following using identities : (i) (7x + 2y)2 (ii) (4m – 3m)2(iii) (4a + 3b) (4a – 3b) (iv) (k + 2) (k – 3)

Answer»

(i) (7x + 2y)2 = (7x)2 + 2 (7x) (2y) + (2y)2 = 49x2 + 28xy + 4y2

(ii) (4m – 3m)2 = (4m)2 – 2(4m) (3m) + (3m)2 = 16m2 – 24mn + 9n2

(iii) (4a + 3b) (4a – 3b) [We have (a + b) (a – b) = a2 – b2

Put [a = 4a, b = 3b] 

(4a + 3b) (4a – 3b) = (4a)2 – (3b)2 = 16a2 – 9b2 

(iv) (k + 2)(k – 3) [We have (x + a) (x – b) = x2 + (a – b)x – ab]

Put [x = k, a = 2, b = 3] 

(k + 2) (k – 3) = k2 + (2 – 3)x – 2 x 3 = k2 – x – 6

491.

Expand using appropriate identities:(98)2

Answer»

(98)2 

= (100 – 2)2

Comparing (100 – 2)2 with (a – b)2 we get
a = 100, b = 2

(a – b)2 = a2 – 2ab + b2

(100 – 2)2 

= 1002 – 2(100)(2) + 22

= 10000 – 400 + 4 

= 9600 + 4 

= 9604

492.

Expand (i) (3a – 4b)3 (ii) (x + \(\frac{1}{y}\))3

Answer»

(i) (3a – 4b)3 We know that 

(x – y)3 = x3 – 3x2y + 3xy2 – y3 

(3a - 4b)3 = (3a)3 – 3(3a)2 (4b) + 3(3a)(4b)2 – (4b)3 

= 27a3 – 108a2b + 144 ab2 – 64b3

(ii) (x + \(\frac{1}{y}\))3 

(x + y)3 ≡ x+ 3x2y + 3xy2 + y3

(x + \(\frac{1}{y}\))3 = x3\(\frac{3x^2}{y}+\frac{3x}{y^2}+\frac{1}{y^3}\)

493.

Evaluate the following by using identities:(i) 983 (ii) 10013

Answer»

(i) 983 = (100 – 2)3 

(a – b)3 ≡ a3 – 3a2b + 3ab2 – b3

983 = (100 – 2)3 = 1003 – 3 x 1002 x + 3 x 100 x 22 – 23 

= 1000000 – 3 x 10000 x 2 + 300 x 4 – 8 

= 1000000 – 60000 + 1200 – 8 = 1001200 – 60008 

= 941192

(ii) 10013 = (1000 + 1)3 

(a + b)3 ≡ a3 + 3a2b + 3ab2 + b3

(1000 + 1)3 = 10003 + 3(10002) x 1 + 3 x 1000 x 12 + 13 

= 1000,000,000 + 3,000,000 + 3000 + 1 

= 1,003,003,001

494.

Find x3 – y3, if x – y = 5 and xy = 14.

Answer»

x – y = 5, xy = 14 

x3 – y3 = (x – y)3 + 3xy (x – y) = 5+ 3 x 14 x 5 

= 125 + 210 = 335

495.

(x + y)(x2 – xy + y2) is equal to (1) (x + y)3 (2) (x – y)3 (3) x3 + y3 (4) x3 – y3

Answer»

Answer is (3) x3 + y3

496.

If x – 3 is a factor of p(x), then the remainder is (1) 3 (2) -3 (3) p(3) (4) p(-3)

Answer»

Answer is (3) p(3)

497.

If x – 2 is a factor of q(x), then the remainder is ___ (1) q(-2) (2) x – 2 (3) 0 (4) -2

Answer»

Answer is (3) 0

498.

Which of the following has as a factor? (1) x2 + 2x (2) (x – 1)2 (3) (x + 1)2 (4) (x2 – 22)

Answer»

Answer is (1) x2 + 2x 

499.

In an expression ax2 + bx + c the sum and product of the factors respectively, (1) a, bc (2) b, ac (3) ac, b (4) bc, a

Answer»

Answer is (2) b, ac

500.

If x3 + 6x2 + kx + 6 is exactly divisible by (x + 2), then k = ? (1) -6 (2) -7 (3) -8 (4) 11

Answer»

(4) 11 

P(-2) = (-2)3 + 6 (-2)2 + k (-2) + 6 = 0 

⇒ – 8 + 24 – 2k +6 = 0

⇒ 22 = 2k 

⇒ k = 11